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Abstract. We develop a theory of downward subsets of the space R
I , where I is a finite index set.

Downward sets arise as the set of all solutions of a system of inequalities x ∈ R
I , ft (x) � 0 (t ∈

T ), where T is an arbitrary index set and each ft (t ∈ T ) is an increasing function defined on R
I .

These sets play an important role in some parts of mathematical economics and game theory. We
examine some functions related to a downward set (the distance to this set and the plus-Minkowski
gauge of this set, which we introduce here) and study lattices of closed downward sets and of
corresponding distance functions. We discuss two kinds of duality for downward sets, based on
multiplicative and additive min-type functions, respectively, and corresponding separation properties,
and we give some characterizations of best approximations by downward sets. Some links between
the multiplicative and additive cases are established.

Key words: Abstract convex function; Abstract convex set; Downward set; Min-type coupling func-
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1. Introduction

It is well known that there exist various kinds of necessary and sufficient con-
ditions for the global minimum of a convex function over a convex set. These
conditions play a fundamental role in convex optimization. However, it is very
difficult to obtain verifiable conditions for a global minimum in general non-convex
optimization. Thus it is important to describe some classes of non-convex global
optimization problems, where such conditions can be obtained. In particular, one
can examine some classes of multi-extremal problems, having a certain structure
which is different from convexity, such as monotonic structure.

One of the well known problems of convex optimization is that of best approx-
imation by elements of convex sets. Convexity can be also used for best approx-
imation by complements of convex sets. Best approximation by different kinds
of sets is a very complicated problem. Monotonic structure was used in [13] for
establishing necessary and sufficient conditions for best approximation by elements
of the so-called normal subsets of the cone R

n+. In this paper we study a new class
of multi-extremal problems of best approximation in R

n with monotonic data. First
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we develop special techniques for examining such problems. Such techniques are
useful in the study of some problems related to inequalities defined by increasing
functions and some problems of game theory. We believe that these techniques
will be useful in the study of various global optimization problems with monotonic
data.

Let I = {1, ..., n} and R = (−∞,+∞), the real line. Denote by R
I the space

of all vectors x = (xi)i∈I , endowed with the max-norm and the coordinatewise
order relation. In this paper we shall study downward subsets of the space R

I , that
is, sets A ⊆ R

I such that (x ∈ A, y � x) ⇒ y ∈ A. We use the notation R
I

rather than R
n, since some of our results remain valid, with the same proofs, for

bounded functions on an arbitrary index set I (mutatis mutandis, e.g., replacing
mini∈I by infi∈I in formula (1.3) below).

Convex downward subsets of R
I play an important role in some parts of math-

ematical economics and cooperative game theory, where they are called compre-
hensive sets. Not necessarily convex downward sets have already found applica-
tions in the theory of games with non-transferable utility (see, for example [10]).
We hope that the theory developed in this paper can be used to extend some results
of mathematical economics and cooperative game theory.

Downward sets arise as the set of all solutions of a system of inequalities

x ∈ R
I , ft (x) � 0 (t ∈ T ), (1.1)

where T is an arbitrary index set and, for each t ∈ T , ft is an increasing function
defined on R

I . We shall give a representation of downward sets by means of special
increasing functions.

Downward sets can be considered as a certain analogue of normal subsets of the
cone R

I+. By definition, a set G ⊆ R
I+ is normal if (x ∈ G, x′ ∈ R

I+, x′ � x) ⇒
x′ ∈ G. Normal sets have been studied in [11, 13]. This study has been based on
the application of the ‘multiplicative coupling function’ ϕ0 : R

I+ × R
I+ → R+

defined (see, e.g., [11]) by the ‘scalar product’

ϕ0(x, l) = 〈l, x〉 :=
{

mini∈I (l) lixi if x ∈ R
I+, l ∈ R

I+\{0}
0 if x ∈ R

I+, l = 0,
(1.2)

where I (l) := {i ∈ I : li �= 0}, and of the ‘min-type functions’ (more precisely,
multiplicative min-type functions), i.e., functions of the form ϕ0(., l), with l ∈ R

I+
and ϕ0 of (1.2). Among other results, in [13] it has been shown that a subset A of
R
I is closed and normal if and only if it is abstract convex with respect to the set

of all multiplicative min-type functions, i.e., if and only if A and any outside point
can be separated by a multiplicative min-type function. However, in contrast with
the case of normal sets, multiplicative min-type functions sometimes are not very
convenient in the study of downward sets. We shall show that the ‘additive coupling
function’ ϕ : R

I × R
I → R defined (see e.g. [3, 4] and References therein) by the
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‘scalar product’

ϕ(x, l) := min
i∈I (li + xi) (x ∈ R

I , l ∈ R
I ), (1.3)

and the ‘additive min-type functions’, i.e., functions of the form ϕ(., l),with l ∈ R
I

and ϕ of (1.3), are more suitable for this purpose. We shall prove that a subset A of
R
I is closed and downward if and only if it is abstract convex with respect to the

set of all additive min-type functions, i.e., if and only if A and any outside point
can be separated by an additive min-type function. Also, we shall demonstrate that
downward sets, through the notion of downward hull, form a useful tool in the
study of normal sets.

Another area of applications of downward sets is the theory of best approxima-
tion. The theory of best approximation by elements of convex and reverse convex
sets (that is, complements of convex sets) is well-developed and has found ap-
plications in many areas of mathematics. However, convexity is sometimes a very
restrictive assumption, so there is a clear need to study the best approximation by
not necessarily convex sets. In this direction, the theory of best approximation in
R
I+ endowed with the max-norm, by elements of normal sets, has been developed

in [13]. In the present paper we shall study best approximation in R
I by elements

of downward sets.
For the theory of best approximation in R

I+ endowed with the max-norm, by
elements of normal sets, in [13] it has been necessary to study the more difficult
problem of the separation of a normal set and a certain ball (in the max-norm).
While in [13] it has been shown that the separability of a normal set and a ball
by multiplicative min-type functions can be used to obtain necessary and sufficient
conditions for the least element of best approximation by a normal subset of R

I+,
we shall show that in the case of downward sets in R

I the situation is better, namely,
the separability of a downward set and a ball by multiplicative or additive min-
type functions can be used to establish necessary and sufficient conditions for any
element of best approximation by a downward subset of R

I .

Moreover, we shall study the expression of the distance from a given point x to
a downward set A, as well as the distance to the set A as a function of a variable
point x. We shall describe properties of this function and establish its links with
the so-called plus-Minkowski gauge. We shall study not only individual downward
sets and distance functions, but also the lattice of all closed downward sets and the
corresponding lattice of all distance functions.

The above mentioned results will allow us to extend to closed downward sets
the linear regularity result obtained in [12] for closed normal sets. Recall that a
collection (At)t∈T of subsets of a normed linear space X is called linearly regular
if there exists a constant C > 0 such that for all x ∈ X

dist (x,
⋂
t∈T

At) � C sup
t∈T

dist (x,At ). (1.4)
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This concept plays an important role in the theory of error bounds for convex
inequality systems. Among other results, it is known (see [1], Corollary 5.26)
that if the collection {At}t∈T is finite and each At is a convex polyhedron, then
{At}t∈T is linearly regular, and in [2], fact 2.15, it has been observed that this is a
reformulation of the classical Hoffman error bound result [5].

It was shown in [12] that for closed normal subsets of R
I+ the situation is com-

pletely different, namely an arbitrary collection (At )t∈T of closed normal sets is
linearly regular with C = 1, and for all x ∈ R

I+ we have even

dist (x,
⋂
t∈T

At) = sup
t∈T

dist (x,At ). (1.5)

We shall demonstrate that (1.5) holds also for an arbitrary collection (At)t∈T of
closed downward sets in R

I and all x ∈ R
I .

The structure of the paper is as follows. In Section 2 we present some prelimin-
ary results. In Section 3 we discuss some properties of the distance to a downward
set, introduce and study the plus-Minkowski gauge of a downward set and estab-
lish some links between the distance and the plus-Minkowski gauge. Connections
between downward subsets of R

I and normal subsets of the cone R
I+, based on

the notion of the downward hull of a normal set, are studied in Section 4. The
complete lattices of all closed downward sets, all closed normal sets and all dis-
tance functions, and connections between these lattices, are examined in Section
5. In the rest of the paper we study two types of duality, their applications, and
relations between them. Dualities based on multiplicative and additive min-type
functions and their application to separation of a closed downward set and a ball
are discussed in Sections 6 and 7, respectively. Applications of these separation
properties to characterizations of best approximations by downward sets can be
found in Section 8. A representation of the distance to a downward set through
distances to lower min-type half-spaces is given in Section 9. In the final Section
10 we discuss some connections between the multiplicative and additive cases.

2. Preliminaries

Let I be a finite set of indices. Consider the space R
I of all vectors (xi)i∈I . We

shall use the following notations:
• if x ∈ R

I , then xi is the i-th coordinate of x;
• if x, y ∈ R

I then x � y ⇔ xi � yi for all i ∈ I ;
• if x, y ∈ R

I then x � y ⇔ xi > yi for all i ∈ I ;
• R

I+ = {x = (xi)i∈I ∈ R
I : xi � 0 for all i ∈ I };

• R
I++ = {x = (xi)i∈I ∈ RI : xi > 0 for all i ∈ I };

• 1 = (1, . . . , 1);
• for each x ∈ R

I , x+ = max(x, 0) (coordinatewise, i.e., x+i = max(xi, 0) for
all i ∈ I ).
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In the sequel we shall asume that the space R
I is equipped with the coordin-

atewise order relation � and with the max-norm ‖x‖ = ‖x‖∞ := maxi∈I |xi |.
Note that the ball B(x, r) := {y : ‖y − x‖ � r} can be represented in the form
B(x, r) = {y : x − r1 � y � x + r1}. For any set A ⊆ IRI , we shall denote by int
A, cl A, and bd A, the interior, the closure and the boundary of A, respectively. If
there exists the least element of A, we shall denote it by min A.

DEFINITION 1. A nonempty subset A of the space R
I is called downward if

(x ∈ A, x′ � x) ⇒ x′ ∈ A. We accept, by definition, that the empty set ∅ is
downward.

A simple example of a downward set is a set of the form {y ∈ R
I : y � x},

where x ∈ R
I . It is easy to check that a function f : R

I → R̄ is increasing (i.e.,
(x, y ∈ R

I , x � y) ⇒ f (x) � f (y)) if and only if its level sets Sc(f ) := {y :
f (y) � c} are downward for all c ∈ IR.

PROPOSITION 1. Let A ⊂ R
I be a downward set and x ∈ R

I .

(a) If x ∈ A, then x − ε1 ∈ int A for all ε > 0. Hence, int A �= ∅.
(b) We have

int A = {
x ∈ R

I : ∃ε > 0, x + ε1 ∈ A
}
. (2.6)

(c) If A is closed, then it is regular, that is, A =cl intA.
Proof. (a) Let x ∈ A and ε > 0. Since the greatest element of the ball B :=

B(x − ε1, ε) is (x − ε1)+ ε1 = x ∈ A, and since A is downward, it follows that
B ⊂ A. Hence, x − ε1 ∈intA, so intA �= ∅.

(b) If there exists ε > 0 such that x + ε1 ∈ A, then, by (a), we have x =
(x + ε1)−ε1 ∈int A. Conversely, if x ∈int A, then there exists a ball B(x, ε) ⊂ A

(with ε > 0). Since x + ε1 ∈ B(x, ε), it follows that x + ε1 ∈ A.

(c) Taking ε → 0 in part (a), it follows that x ∈cl intA. Thus, A ⊆ cl intA. On
the other hand, since A is closed, we have that A ⊇ cl intA. Hence, A is regular. �

3. The distance to a downward set

Let A be a subset of R
I and x ∈ R

I . We will use the following notations:

dA(x) := dist (x,A) =
{

inf{‖x − a‖ : a ∈ A} if A �= ∅
+∞ if A = ∅, (3.1)

PA(x) = {a ∈ A : dA(x) = ‖x − a‖}. (3.2)

The function dA is called a distance function. Geometrically, PA(x) is the set of
all elements of A which are nearest to x . It is well-known that for each closed set
A ⊆ R

I and each x ∈ R
I the set PA(x) is not empty, so the infimum in (3.1) is

attained. It is well-known (and easy to check) that PA(x) ⊆ bdA for each A and
each x /∈ A.
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PROPOSITION 2. Let A be a closed downward set and x0 ∈ R
I . Then there exists

the least element a0 = minPA(x
0) of the set PA(x

0), and we have

a0 = x0 − r1, (3.3)

where r = dA(x
0).

Proof. The result holds if x0 ∈ A. Assume now that x0 /∈ A, that is, r =
dA(x

0) > 0, and let us consider the element a0 defined by (3.3). We have ‖x0 −
a0‖ = r and for any y ∈ B(x0, r) there holds y � x0 − r1 = a0, so a0 is the
least element of the ball B(x0, r) . Furthermore, since A is closed, PA(x

0) �= ∅.
Let a ∈ PA(x

0). Then ‖x0 − a‖ = r, that is, a ∈ B(x0, r). Since a0 is the least
element of B(x0, r), it follows that a0 � a. Since the set A is downward, it follows
that a0 ∈ A. Hence a0 ∈ PA(x

0) and a0 is the least element of PA(x
0). �

COROLLARY 1. LetA be a closed downward set, x0 ∈ R
I and a0 = minPA(x

0).

Then a0 � x0.
Proof. By (3.3), we have a0 = x0 − r1 � x0. �

COROLLARY 2. The following is valid for a closed downward set A and any
x ∈ R

I :
dA(x) = min{λ � 0 : x − λ1 ∈ A}. (3.4)

Proof. If x ∈ A, then x − 0 · 1 ∈ A, so min{λ � 0 : x − λ1 ∈ A} = 0 = dA(x).
Let x �∈ A. Then for any λ > 0 with x − λ1 ∈ A we have

λ = ‖λ1‖ = ‖x − (x − λ1)}‖ � dA(x),

and, by Proposition 2, x − dA(x)1 ∈ A. Thus (3.4) holds. �
REMARK 1. An anonymous referee drew our attention to the following fact:
Proposition 2 and Corollary 2 allow one to develop a simple numerical method
for the search of the least element a0 of the set PA(x

0). Indeed, by Proposition
2 and Corollary 2, this search can be reduced to the following one-dimensional
optimization problem:

λ→ min subject to x − λ1 ∈ A.

This problem can be solved for example by a well-known binary search method.

COROLLARY 3. Let A be a closed downward set. Then

R
I\A = {a + λ1 : a ∈ bd A, λ > 0}. (3.5)
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Proof. For any x0 ∈ R
I\A, take a = a0 of Proposition 2 (so a ∈bdA) and

λ = r = dA(x
0). Then, by (3.3), we obtain x0 = a + λ1.

Conversely, assume that there exist a ∈ bd A and λ > 0 such that a + λ1 ∈ A.

Let V := {x ∈ R
I : x � a + λ1}. Then V is an open neighbourhood of a. But,

since a + λ1 ∈ A and A is downward, it follows that V ⊆ A, so a /∈ bd A, a
contradiction. �
REMARK 2. (a) If A is a non-empty downward subset of R

I , then each x ∈ R
I

satisfies

{λ ∈ R : x ∈ λ1+ A} �= ∅. (3.6)

Indeed, let x ∈ R
I , a ∈ A. Choose any λ ∈ R such that x − λ1 � a (e.g.,

λ := maxi∈I (xi − ai)). Then, since A is downward, x − λ1 ∈ A, so x ∈ λ1+ A,

which proves our assertion.
(b) Let A be a proper downward subset of R

I (i.e., such that ∅ �= A �= R
I ), and

x ∈ R
I . For any λ ∈ R such that x ∈ λ1+ A, that is, x − λ1 ∈ A, and all λ′ � λ

we have, since A is downward, x − λ′1 ∈ A, that is, x ∈ λ′1 + A. Thus, the set
{λ ∈ R : x ∈ λ1 + A} is a half-line in R, either of the form (ρ,+∞) or of the
form [ρ,+∞). Also, clearly, if A = ∅, then {λ ∈ R : x ∈ λ1 + A} = ∅, while if
A = R

I , then {λ ∈ R : x ∈ λ1+ A} = R.

(c) According to (a), if A is a non-empty downward subset of R
I , then

∪λ∈R(λ1+ A) = R
I , (3.7)

or, equivalently,

A+ ∪λ∈Rλ1 =R
I ; (3.8)

by (b), in (3.7) and (3.8) one can replace λ ∈ R by λ ∈ R+.

DEFINITION 2. Let A be a downward set. The function ρA : R
I → R̄ defined

by

ρA(x) = inf{λ ∈ R : x ∈ λ1+ A} (x ∈ R
I ) (3.9)

is called the Minkowski gauge with respect to addition (or plus-Minkowski gauge)
of the set A.

An explanation of this term can be found in Section 10.
Note that if A is a closed downward set, then the inf in the definition of the

plus-Minkowski gauge is attained, that is,

ρA(x) = min{λ ∈ R : x ∈ λ1+ A} (x ∈ R
I ). (3.10)

Let us give some simple examples.
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PROPOSITION 3. Let

Av = {x ∈ R
I : x � v} (v ∈ R

I
+). (3.11)

Then Av is a closed downward set and

ρAv (x) = max
i∈I

(xi − vi) (x ∈ R
I ). (3.12)

Proof. Let x ∈ R
I . Then, since I is finite, we have

ρAv (x) = inf{λ ∈ R : x − λ1 � v} = inf{λ ∈ R : xi − λ � vi (i ∈ I )}
= inf{λ ∈ R : xi − vi � λ (i ∈ I )} = max

i∈I
(xi − vi).

�
PROPOSITION 4. Let l ∈ R

I and

Dl = {x ∈ R
I : min

i∈I
(xi − li ) � 0}. (3.13)

Then Dl is a closed downward set and

ρDl
(x) = min

i∈I
(xi − li) (x ∈ R

I ). (3.14)

Proof. For any x ∈ R
I we have

ρDl
(x) = inf{λ ∈ R : x − λ1 ∈ Dl} = inf{λ ∈ R : min

i∈I (xi − λ− li ) � 0}
= inf{λ ∈ R : min

i∈I (xi − li ) � λ} = min
i∈I (xi − li ).

�
DEFINITION 3. Any set Dl of the form (3.13) will be called a lower min-type
half-space.

REMARK 3. Geometrically, Dl is the complement of the ‘open right angle’ {x ∈
R
I : x � l}.

THEOREM 1. Let A be a closed downward set. Then dA = ρ+A , that is,

dA(x) = ρA(x)
+ = max(ρA(x), 0) (x ∈ R

I ). (3.15)

Proof. Let x ∈ R
I . Then, by Corollary 2 and Remark 2, we have

dA(x) = min{λ � 0 : x ∈ λ1+ A} = max{inf{λ ∈ R : x ∈ λ1+ A}, 0}.
(3.16)

But, by (3.9), the right hand side of (3.16) is just max(ρA(x), 0). �
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REMARK 4. (a) From Proposition 1(b) it follows that for any downward set A we
have

int A = {x ∈ R
I : ρA(x) < 0},RI\int A = {x ∈ R

I : ρA(x) � 0}. (3.17)

On the other hand, clearly, dA(x) = 0 for all x ∈ int A. Hence, by Theorem 1, for
any closed downward set A we have

dA(x) =
{
ρA(x) if x /∈ int A

0 if x ∈ int A.
(3.18)

(b) For any closed downward set A we have

bd A = {x ∈ R
I : ρA(x) = 0}. (3.19)

Indeed, if x ∈ bd A = A\int A, then, by (3.10) and (3.17), we have ρA(x) = 0.
Conversely, if ρA(x) = 0, then, by (3.17), we have x /∈ int A, whence, by (3.18),
dA(x) = ρA(x) = 0, so x ∈ A\int A = bd A.

PROPOSITION 5. Let A be a closed downward set, x ∈ R
I , and λ > 0.

(a) If x �∈ int A, then

dA(x + λ1) = dA(x)+ λ. (3.20)

Hence:
(a1) If x ∈ bd A (⊆ A, so dA(x) = 0), then

dA(x + λ1) = λ. (3.21)

(a2) If x /∈ A (so dA(x) > 0), then

dA(x + λ1) > λ.

(b) If x ∈ int A, then

dA(x + λ1) < λ. (3.22)

Proof. (a) Assume that x �∈intA.
Case 1◦ : x ∈ bdA. Let y = x + λ1 and let λ′ < λ. Since x �∈ intA, by

Proposition 1 we have x + (λ− λ′)1 �∈ A, so

y − λ′1 = y − λ1+ (λ− λ′)1 = x + (λ− λ′)1 �∈ A.

On the other hand, since x ∈ bdA and A is closed, y − λ1 = x ∈ A. Hence,
λ = min{λ′ : y−λ′1 ∈ A} and therefore, by Corollary 2, λ = dA(y). Consequently,

dA(x + λ1) = dA(y) = λ = dA(x)+ λ.
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Case 2◦ : x �∈ A. Let r = dA(x). Then, by Proposition 2, x′ := x − r1 ∈
bd A. Hence, applying (3.21), we obtain

dA(x + λ1) = dA(x
′ + (r + λ)1) = r + λ = dA(x)+ λ.

(b) Assume now that x ∈ int A. Then, by (2.6), there exists an ε > 0 such that
x + ε1 ∈ A. Hence

dA(x + λ1) � ‖(x + λ1)− (x + ε1)‖ = ‖(λ− ε)1‖ = λ− ε < λ.

�

4. Connections between downward sets, normal sets, and their
approximation properties

We recall that a subset G of the cone R
I+ is called normal if (x ∈ G, 0 � x′ �

x) "⇒ x′ ∈ G. For example, if f is an increasing function defined on R
I+, then

its lower level sets {x ∈ R
I+ : f (x) � c} for all c are normal.

Let G be a normal subset of R
I+. The intersection of all downward sets contain-

ing G is again downward. This set is called the downward hull of the set G. We
shall denote the downward hull of a normal set G by G∗.

Let us indicate some properties of the downward hull of a normal set. For any
set X ⊆ R

I we shall use the notation X+ = {x+ : x ∈ X}.
PROPOSITION 6. Let G∗ ⊆ R

I be the downward hull of a normal set G ⊆ R
I+.

Then
(1) G∗ = G− R

I+.
(2) G∗ = {x ∈ R

I : x+ ∈ G}.
(3) G = G∗ ∩ R

I+.
(4) G is closed if and only if G∗ is closed.
(5) (G∗)+ = G.

Proof. (1) By [14], p. 65, Proposition 2.3, we have

G∗ = {y ∈ R
I : ∃g ∈ G, y � g} = {g − z : g ∈ G, z ∈ IRI

+} = G− R
I
+.

(4.1)

(2) If x ∈ G∗, then, by (4.1), there exists g ∈ G such that g � x. Since also
g ∈ G ⊆ R

I+, we conclude that g � max(x, 0) = x+. Since G is normal, it follows
that x+ ∈ G.

Conversely, if x+ ∈ G, then, since x � x+, from (4.1) (with g = x+) it follows
that x ∈ G∗.

(3) The inclusion G ⊆ G∗ ∩ R
I+ is obvious. Conversely, if x ∈ G∗ ∩ R

I+,
then, since x ∈ R

I+, we have x = x+. Hence, by x ∈ G∗ and part (2), we obtain
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x = x+ ∈ G (alternatively, by part (1), we have 0 � x = g − z � g for some
g ∈ G and z ∈ R

I+, and hence, since G is a normal set, x ∈ G).

(4) Assume now that G is closed, and let gk ∈ G∗, gk → g. Then g+k → g+.
Also, by gk ∈ G∗ and part (2), we have g+k ∈ G. Hence, since G is closed, we
obtain g+ ∈ G ⊆ G∗. Consequently, since G∗ is downward and g � g+, it follows
that g ∈ G∗. Thus, G∗ is closed.

Conversely, if G∗ is closed, then, by part (3), so is G.
(5) Let x+ ∈ (G∗)+, where x ∈ G∗. Then, by part (2), x+ ∈ G.

Conversely, if x ∈ G, then, by part (3), x ∈ G∗ (so x+ ∈ (G∗)+) and x = x+,
whence x ∈ (G∗)+. �
THEOREM 2. (a) A downward set A ⊆ R

I is the downward hull of a normal set
G ⊆ R

I+ if and only if

A+ ⊆ A. (4.2)

(b) A downward set A ⊆ R
I is the downward hull of a closed normal set G ⊆ R

I+
if and only if A is closed and satisfies (4.2).

Moreover, in both (a) and (b) the set G is unique, namely

G = A ∩ R
I
+. (4.3)

Proof. (a) If A = G∗, where G ⊆ R
I+ is a normal set, then, by Proposition 6,

part (5), we have A+ = (G∗)+ = G ⊆ G∗ = A.

Conversely, assume now that a downward set A ⊆ R
I satisfies (4.2), and define

G ⊆ R
I+ by (4.3). Then, since A is a downward set, G is normal. Furthermore, if

a ∈ A, then for g := a+ we have g ∈ A (by (4.2)) and g ∈ R
I+, so g ∈ G (by

(4.3)). Hence, since a � g, by the first equality in (4.1) we have a ∈ G∗. Thus,
A ⊆ G∗. Conversely, by (4.3) we have G ⊆ A, whence, since A is downward, it
follows that G∗ ⊆ A. Thus, A = G∗.

(b) Assume that A = G∗, where G ⊆ R
I+ is a closed normal set. Then, by

Proposition 6, part (4), A is closed. Also, by part (a), there holds (4.2).
Conversely, assume now that A is a closed downward set satisfying (4.2). Then

the set G ⊆ R
I+ defined by (4.3) is closed and normal, and, by part (a), we have

A = G∗.
Finally, observe that if a downward set A is the downward hull G∗ of a closed

normal set G, then, by Proposition 6, part (3), we have (4.3). This proves the
uniqueness of G. �

We need also the following

PROPOSITION 7. Let x0 ∈ R
I+, a0 ∈ R

I . Then

‖x0 − a0‖ � ‖x0 − (a0)+‖. (4.4)
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Proof. Let

I+ = {i : a0
i > 0}, I0 = {i : a0

i = 0}, I− = {i : a0
i < 0}. (4.5)

Then

(a0
i )
+ =

{
a0
i if i ∈ I+ ∪ I0

0 if i ∈ I−,
(4.6)

and hence, since x0 ∈ R
I+,

|x0
i − a0

i | = |x0
i − (a0

i )
+| (i ∈ I+ ∪ I0),

|x0
i − a0

i | = x0
i − a0

i > x0
i = |x0

i − (a0
i )
+| (i ∈ I−).

Thus ‖x0 − a0‖ � ‖x0 − (a0)+‖ . �
COROLLARY 4. Let G ⊆ R

I+ be a closed normal set, G∗ ⊆ R
I the downward

hull of G, and x0 ∈ R
I+. Then

dG∗(x
0) = dG(x

0). (4.7)

Proof. Since G∗ ⊇ G, we have dG∗(x
0) � dG(x

0). On the other hand, by
Proposition 6, part 2), and Proposition 7, for each a ∈ G∗ we have a+ ∈ G and
‖x0 − a‖ � ‖x0 − a+‖ � dG(x

0), whence dG∗(x
0) � dG(x

0). �
PROPOSITION 8. Let G be a closed normal set and x0 ∈ R

I+. Then there exists
the least element g0 of the set PG(x

0), namely g0 = (a0)+, where a0 is the least
element of the set PG∗(x

0).
Proof. By Proposition 2 and Corollary 4 we have a0 = x0 − r1, where r =

dG∗(x
0) = dG(x

0). Hence (a0)+ = max(x0 − r1, 0), and thus, for the sets I+, I0

and I− defined by (4.5) we obtain

((a0)+)i =
{
x0
i − r i ∈ I+ ∪ I0

0 i ∈ I−.
(4.8)

It follows from Proposition 7 that r = ‖x0 − a0‖ � ‖x0 − (a0)+‖. Since a0 ∈ G∗,
we have (a0)+ ∈ G (by Proposition 6, part 2)), whence ‖x0 − (a0)+‖ � r. Thus
‖x0 − (a0)+‖ = r, so (a0)+ ∈ PG(x

0). Let g ∈ PG(x
0). Then ‖g− x0‖ = r. Since

g ∈ G ⊆ G∗, it follows that g ∈ PG∗(x
0), so g � minPG∗(x

0) = a0. We also have
g � 0. Thus g � (a0)+, so (a0)+ = minPG(x

0). �
REMARK 5. The existence of the least element g0 of the set PG(x

0) and the
formula g0 = (x0 − r1)+ have been proved, with a different method, in [13].
Proposition 8 shows, in addition, that g0 = (a0)+, the positive part of the least
element of the set PG∗(x

0). Moreover, from Proposition 8 and Corollary 1 we
obtain again the result of [13] that if G is a closed normal set, x0 ∈ R

I+\G and g0

is the least element of PG(x
0), then g0 � x0.
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Now we shall extend formula (4.7) to an arbitrary element x0 ∈ R
I .

THEOREM 3. Let G ⊆ R
I+ be a closed normal set, G∗ ⊆ R

I the downward hull
of G, and x0 ∈ R

I . Then

dG∗(x
0) = dG((x

0)+). (4.9)

Proof. If x0 ∈ G∗, then, by Proposition 6, part (2), (x0)+ ∈ G and hence
dG∗(x

0) = 0 = dG((x
0)+). If x0 /∈ G∗, let r = dG∗(x

0) (> 0) and let a0 be the
least element of the set PG∗(x

0). Then, by Proposition 2, a0 = x0 − r1. Hence, by
Proposition 6, part (2), (x0 − r1)+ = (a0)+ ∈ G. We claim that

(x0)+ − r1 � (x0 − r1)+. (4.10)

Indeed, for each i ∈ I we have

((x0)+ − r1)i =((x0)+)i − r

=(x0
i )
+ − r = max(x0

i , 0)− r = max(x0
i − r,−r)

� max(x0
i − r, 0) = (x0

i − r)+ = (x0 − r1)+i ,

which proves the claim (4.10). Hence, since G∗ is downward, by (x0 − r1)+ ∈
G ⊆ G∗ and (4.10) we have

(x0)+ − r1 ∈ G∗. (4.11)

Let (see Corollary 4)

dG∗((x
0)+) = dG((x

0)+) = r ′. (4.12)

Then, from Corollary 2 and (4.11) it follows that

r ′ = min{λ � 0 : (x0)+ − λ1 ∈ G∗} � r. (4.13)

In order to complete proof we need to show that r ′ � r. Let g0 ∈ G(⊆ R
I+) be

the least element of PG((x
0)+). Then, by Remark 5, we have g0 � (x0)+. Let

I 0
− = {i ∈ I : x0

i < 0}. (4.14)

Then for i ∈ I 0− we have 0 � g0
i � (x0)+i = 0, so g0

i = 0. On the other hand,
for i /∈ I 0− we have

x0
i − g0

i = (x0)+i − g0
i � ‖(x0)+ − g0‖ = dG((x

0)+) = r ′. (4.15)

Consider the vector a′ defined by

a′i =
{
x0
i if i ∈ I 0−
g0
i if i �∈ I 0−.

(4.16)
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Then for i ∈ I 0− there holds a′i = x0
i < 0 � g0

i , and for i /∈ I 0− we have a′i = g0
i ,

so a′ � g0, whence, since g0 ∈ G ⊆ G∗, it follows that a′ ∈ G∗. Furthermore,
for i ∈ I 0− there holds x0

i − a′i = 0 = (x0)+i − g0
i , and for i /∈ I 0− we have

x0
i − a′i = (x0)+i − g0

i , so x0 − a′ = (x0)+ − g0. Consequently,

r � ‖x0 − a′‖ = ‖(x0)+ − g0‖ = r ′.

�

5. Lattices of downward sets, normal sets and distance functions

Let us first outline some properties of the family of all downward sets in R
I .

(1) If A is a downward set in R
I , then so is its closure clA. Indeed, assume that A

is non-empty and let f ∈ clA and f ′ � f . Let fn ∈ A be a sequence such that
fn → f and let f ′n := min(f ′, fn) (n = 1, 2, ...). Then, since f ′n � fn and A is
a downward set, we have f ′n ∈ A (n = 1, 2, ...). Also, f ′n → min(f ′, f ) = f ′.
Hence f ′ ∈ clA.

(2) Let (At )t∈T be a family of downward sets in R
I , where T is an arbitrary set of

indices. Then both
⋃

t∈T At and
⋂

t∈T At are downward sets.
(3) If A is a downward set in R

I , then so is the shift x + A, for each x ∈ R
I (the

shift x + ∅ of the empty set is again empty, by definition).
Let us denote by A the family which consists of all closed downward sets in R

I

(including the empty set ∅). Assume that A is equipped with the order relation by
containment (i.e., A1 � A2 if and only if A1 ⊇ A2).

PROPOSITION 9. The set A is a complete lattice. The supremum of a family
(At)t∈T in A coincides with the intersection

⋂
t∈T At ; the infimum of this family in

A coincides with the closure cl (
⋃

t∈T At).

Proof. This follows from the properties (2) and (1) above. �
Let us consider the set D of all distance functions dA, where A ∈ A (and where

d∅(x) = +∞ for all x ∈ R
I ). Assume that D is equipped with the pointwise order

relation: (d1 � d2) ⇔ (d1(x) � d2(x) for all x ∈ R
I ). Let φ : A → D be the

mapping defined by

φ(A) = dA (A ∈ A). (5.1)

PROPOSITION 10. The mapping φ is an isomorphism between the ordered sets
A and D.

Proof. First we show that φ is a one-to-one correspondence. Indeed, if A1 �= A2,

then the sets of zeroes of dA1 and dA2 , which are equal to A1 and A2 respectively,
are different, so dA1 �= dA2 . It follows from the definition that φ maps onto D. Also,
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it is clear that φ is an increasing mapping: dA1(x) � dA2(x) if A1 ⊇ A2 (that is, if
A1 � A2). �
PROPOSITION 11. The set D is a complete lattice.

Proof. The result holds since φ is an order isomorphism between A and D and
A is a complete lattice. �
We now calculate the infimum and the supremum in the lattice D.

PROPOSITION 12. Let T be a set of indices, (At )t∈T a family of closed downward
sets, and A = cl

⋃
t∈T At (= inft∈T At ). Then

dA(x) = inf
t∈T

dAt
(x) (x ∈ R

I ). (5.2)

Proof. Let A′ = ⋃
t∈T At . By a well-known lemma (see, e.g., [7], lemma 2.1),

we have

dA(x) = min
a∈clA′

‖x − a‖ = inf
a∈A′

‖x − a‖ = inf
t∈T

inf
a∈At

‖x − a‖ = inf
t∈T

dAt
(x).

�
REMARK 6. We did not use in the proof that the sets At are closed and downward,
nor the properties of the norm ‖.‖∞ .

COROLLARY 5. Let dt ∈ D (t ∈ T ). Then the infimum of the family dt in the
lattice D is the pointwise infimum.

Proof. It follows from Proposition 12 that the pointwise infimum of a family
of functions from D belongs to D as well. Hence, the conclusion follows (see e.g.
[12], proof of Corollary 3.2). �

Let us recall the following definition [6]: Let X be a set of functions defined
on a set Q. A set Y ⊂ X is called an infimal generator of X if x(q) = inf{y(q) :
y ∈ Y, y � x} for each x ∈ X and q ∈ Q (we assume that X is equipped with the
natural pointwise order relation).

We can use the above to describe a small infimal generator of the set D. For
each v ∈ R

I let wv be the function defined on R
I by

wv(x) = (max
i
(xi − vi))

+ (x ∈ R
I ). (5.3)

PROPOSITION 13. The set W := {wv : v ∈ R
I } is an infimal generator of the

set D.
Proof. If d ∈ D, then there exists a closed downward set A such that d = dA.

Since A is downward, we have A = ⋃
v∈A A

v, where Av := {x ∈ R
I : x � v}.

From (5.3), Proposition 3 and Theorem 1 it follows that

wv(x) = ρAv(x)+ = dAv (x) (x ∈ R
I ), (5.4)
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so wv ∈ D. Also, by Proposition 12 and (5.4),

d(x) = dA(x) = inf
v∈A

dAv (x) = inf
v∈A

wv(x) (x ∈ R
I ).

Thus W is an infimal generator of the set D. �
Let us consider now the pointwise supremum of a family of functions from D.

THEOREM 4. Let T be a set of indices, (At )t∈T be a family of closed downward
sets, and A :=⋂

t∈T At . Then we have (1.5), that is,

dA(x) = sup
t∈T

dAt
(x) (x ∈ R

I ). (5.5)

Consequently, every family {At}t∈T of closed downward subsets of R
I is linearly

regular.
Proof. Let x ∈ R

I and rt = dAt
(x). Since A ⊆ At, we have rt � dA(x) for

all t ∈ T , whence s := supt∈T rt � dA(x). Thus, if s = +∞, then dA(x) = +∞
and we have (5.5). Assume now that s < +∞. Then the inequality rt � s implies
x− rt1 � x− s1 for all t ∈ T . Hence, by x− rt1 ∈ At and since At is a downward
set, we have x−s1 ∈ At, for each t ∈ T . Thus, x−s1 ∈ ⋂t∈T At = A (so A �= ∅),
whence, by Corollary 2, dA(x) = min{λ � 0 : x − λ1 ∈ A} � s. Consider now
any number λ > 0 such that x − λ1 ∈ A. Then x − λ1 ∈ At (t ∈ A), whence,
by Corollary 2, λ � dAt

(x) = rt (t ∈ T ), so λ � supt∈T rt = s. Applying again
Corollary 2, we deduce that dA(x) = min{λ � 0 : x−λ1 ∈ A} � s. Consequently,
dA(x) = s, which proves (5.5). Hence (see Section 1), the family {At}t∈T is linearly
regular. �
COROLLARY 6. Let dt ∈ D (t ∈ T ). Then the supremum of the family (dt )t∈T in
the lattice D is the pointwise supremum.

Proof. Similar to that of Corollary 5. �
Let us also give an axiomatic characterization of distance functions to closed

downward sets.

THEOREM 5. Let d be a function defined on R
I . Then d ∈ D if and only if either

d ≡ 0 or the following properties hold:

(1) min
x∈RI

d(x) = 0;
(2) d is increasing and continuous;
(3) For each y ∈ R

I there exists λy ∈ R such that

d(y + λ1)=(λ− λy)
+ (λ ∈ R). (5.6)
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Proof. Let A be a closed downward set and d := dA. If A = R
I , then d ≡

0. Assume now that A �= R
I . Then property (1) trivially holds and property (2)

follows from Corollary 2. For any y ∈ R
I , define

λy := max {α ∈ R : y + α1 ∈ A} . (5.7)

Then, since A �= R
I is a downward set, the max in (5.7) is attained and λy < +∞.

We have y+ λy1 ∈ A and y+ λy1+ ε1 /∈ A for all ε > 0, whence, by Proposition
1(b), y+λy1 ∈bd A. Hence, by Proposition 5(a) applied to x = y+λy1, it follows
that d(y+λy1+µ1) = µ for all µ > 0. Choose µ := (λ−λy)

+. Then for λ > λy
we have µ = λ− λy > 0, so d(y + λ1) = d(y + λy1 + µ1) = µ = (λ − λy)

+.
On the other hand, by y + λy1 ∈ A and since A is downward, for all λ ∈ R with
λ � λy we have y + λ1 ∈ A, whence d(y + λ1) = 0 = (λ− λy)

+.
Conversely, if d ≡ 0 then d = dA for A = R

I . Assume now that a function
d �≡ 0 enjoys properties (1)-(3). Consider the closed downward set A := {x ∈
R
I : d(x) = 0}. Then, by properties (1) and (2), we have A �= ∅ and A is closed

and downward. Also, clearly, d(x) = 0 = dA(x) for all x ∈ A. Let x ∈ R
I\A,

r = dA(x) and y = x−r1. Then, by Proposition 2, y is the least element of PA(x),
whence y ∈bd A ⊆ A. Hence, by (5.6) for λ = 0, it follows that (−λy)+ =
d(y) = 0, and so λy � 0. On the other hand, for all λ > 0 we have, by y ∈bd A

and Proposition 1(b), y+λ1 /∈ A, whence, by property (3) and the definition of A,
we obtain (λ−λy)

+ = d(y+λ1) > 0. This implies that λy � 0, and hence λy = 0.
Thus, again by property (3), we can write d(x) = d(y + r1)=(r − λy)

+ = r. �
Consider the family G of all closed normal subsets of the cone R

I+. Assume that
G is equipped with the order relation by containment. Note that the intersection
and the union of an arbitrary family of normal sets are again a normal set and the
closure of a normal set is normal. As has been observed in [12], from this assertion
it follows that the family G is a complete lattice: if (Gt )t∈T is a family of sets,
Gt ∈ G for all t ∈ T , then

sup
t∈T

Gt =
⋂
t∈T

Gt, inf
t∈T Gt = cl

⋃
t∈T

Gt . (5.8)

Consider the mapping ψ : G → A, where

ψ(G) = G∗. (5.9)

Note that, by the uniqueness part of Theorem 2, ψ is a one-to-one correspondence.
Denote by A0 the image of the mapping ψ , that is, the family of all sets of the
form G − R

I+ with G ∈ G. Then A0 is a proper subset of A (see, e.g., Theorem
2(b)). Assume that A0 is ordered by containment. Clearly, ψ is an isomorphism of
the ordered sets G and A0, hence A0 is a complete lattice. Also, for any family of
normal sets (Gt )t∈T we have⋃

t∈T
(Gt − R

I
+) =

⋃
t∈T

(Gt)∗ =
(⋃
t∈T

Gt

)
∗
=
(⋃
t∈T

Gt

)
− R

I
+, (5.10)
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⋂
t∈T

(Gt − R
I
+) =

⋂
t∈T

(Gt)∗ =
(⋂
t∈T

Gt

)
∗
=
(⋂
t∈T

Gt

)
− R

I
+. (5.11)

Consequently, the infimum and the supremum of a family in the lattice A0

coincide with the infimum and supremum, respectively, of this family in the lattice
A.

From the above we can deduce the following result, which has been proved in
[12] with a direct method:

PROPOSITION 14. ([12], Theorem 3.1). Let (Gt )t∈T be a family of closed normal
sets and G = ⋂

t∈T Gt . Then

dG(x) = sup
t∈T

dGt
(x) (x ∈ R

I
+). (5.12)

Proof. By formula (5.11), we have G∗ =⋂
t∈T (Gt)∗. Hence, applying (4.7) and

Theorem 4, we conclude that for x ∈ R
I+:

dG(x) = dG∗(x) = sup
t∈T

d(Gt )∗(x) = sup
t∈T

dGt
(x).

�

6. Duality: a multiplicative min-type coupling function and separation of a
closed downward set and a ball

We shall consider the coupling function ϕ0 : R
I ×R

I++ → R defined by the ‘scalar
product’

ϕ0(x, l) = 〈l, x〉 := min
i∈I lixi (x ∈ R

I , l ∈ R
I
++). (6.1)

Let us recall the following result of [13]:

THEOREM 6. ([13], Proposition 4.3 and its proof). Let G be a closed normal set
and x0 ∈ R

I+ \ G. Assume that the least element g0 of the set PG(x
0) is strictly

positive. Then there exists a vector l ∈ R
I++ such that

〈l, g〉 � 1 � 〈l, y〉 (g ∈ G, y ∈ B0(x
0, r)), (6.2)

where r = dG(x) and B0(x
0, r) = {y ∈ R

I+ : ‖x0 − y‖ � r}.
We shall apply this result to prove the following theorem.

THEOREM 7. For a set A ⊆ R
I , the following statements are equivalent:

1◦. A is downward and closed.
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2◦. For each x0 �∈ A there exist a strictly positive vector l and a number λ > 0
such that

〈l, a + λ1〉 � 1 � 〈l, y + λ1〉 (a ∈ A, y ∈ B(x0, r)), (6.3)

where r = dA(x
0) and B(x0, r) = {y ∈ R

I : ‖x0 − y‖ � r}.
3◦. For each x0 �∈ A there exist a strictly positive vector l and numbers λ, r > 0

such that

〈l, a + λ1〉 � 〈l, y + λ1〉 (a ∈ A, y ∈ B(x0, r)). (6.4)

Proof. 1◦ ⇒ 2◦. Assume 1◦ and let a0 = x0 − r1 be the least element of the
set PA(x

0) (see Proposition 2). Let λ > r. Consider the set Aλ := A+ λ1 and the
element xλ = x0 + λ1. Then xλ ∈ R

I+ for sufficiently large λ, and we have

dAλ(xλ) = min
a∈A

‖(x0 + λ1)− (a + λ1)‖ = min
a∈A

‖x0 − a‖ = dA(x) = r.

Let aλ be the least element of the set PAλ(xλ). Then aλ coincides with the shift
a0 + λ1 of the least element a0 of PA(x), and hence the inequality aλ � 0 holds
for sufficiently large λ. Therefore, taking such a λ, and applying Theorem 6 to the
closed normal set G := Aλ ∩ R

I+, it follows that there exists a vector l � 0 such
that

〈l, a′〉 � 1 � 〈l, y′〉 (a′ ∈ Aλ ∩ R
I
+, y′ ∈ B0(x

0 + λ1, r)), (6.5)

whence also

〈l, a′〉 � 1 � 〈l, y′〉 (a′ ∈ Aλ, y′ ∈ B0(x
0 + λ1, r)), (6.6)

since for each a′ ∈ R
I\RI+ we have 〈l, a′〉 < 0 (by l � 0 and (6.1)).

Consider the ball B(x0 + λ1, r). Since

B(x0 + λ1, r) = {y′ : x0 + λ1− r1 � y′ � x0 + λ1+ r1}, (6.7)

we have B(x0+λ1, r) ⊂ R
I++ for sufficiently large λ, so B(x0+λ1, r) = B0(x

0+
λ1, r). Also, clearly, y′ ∈ B(x0 + λ1, r) if and only of y′ − λ1 ∈ B(x0, r). Thus,
(6.6) is equivalent to (6.3).

The implication 2◦ ⇒ 3◦ is obvious.
3◦ ⇒ 1◦. Assume 3◦. If A is not downward, then there exist a ∈ A and x0 ∈

R
I\A such that x0 � a. Then, by 3◦, there exist a strictly positive vector l and

numbers λ, r > 0 satisfying (6.4). Hence, for y = x0 − r1 ∈ B(x0, r) (so y �
a − r1) we obtain

〈l, a + λ1〉 � 〈l, x0 − r1+ λ1〉 � 〈l, a − r1 + λ1〉,
which is impossible. Thus, A is downward.
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Finally, if A is not closed, then there exists a sequence {xk} ⊆ A converging to
some x0 ∈ R

I\A. Then, by 3◦, there exist a strictly positive vector l and numbers
λ, r > 0 satisfying (6.4). Hence, for a = xk with k large enough so as to have
xk � x0 − r1, and y = x0 − r1 ∈B(x0, r), we obtain

〈l, x0 − r1+ λ1〉 < 〈l, xk+λ1〉 � 〈l, x0 − r1 + λ1〉,
which is impossible. Thus, A is closed. �

7. Duality: an additive min-type coupling function and separation of a
closed downward set and a ball

DEFINITION 4. Let x ∈ R
I . The set

{x + λ1 ∈ R
I : λ ∈ R} (7.8)

is called the diagonal line passing through x.

DEFINITION 5. A set U ⊆ R
I is said to be closed along diagonal lines, if

(x ∈ R
I , λk ∈ R, x + λk1 ∈ U, k = 1, 2, ..., λk → λ)⇒ x + λ1 ∈ U. (7.9)

We shall consider the coupling function ϕ : R
I × R

I → R defined by

ϕ(x, l) := min
i∈I (li + xi) (x ∈ R

I , l ∈ R
I ). (7.10)

THEOREM 8. For a subset A of R
I the following statements are equivalent:

1◦. A is a closed downward set.
2◦. A is closed along diagonal lines and downward.
3◦. For each x ∈ R

I\A there exists l ∈ R
I such that

sup
a∈A

ϕ(a, l) � 0 < ϕ(x, l). (7.11)

4◦. For each x ∈ R
I\A there exists l ∈ R

I such that

sup
a∈A

ϕ(a, l) < ϕ(x, l). (7.12)

Proof. The implication 1◦ ⇒ 2◦ is obvious.
2◦ ⇒ 3◦. Assume that A is closed along diagonal lines and downward and let

x ∈ R
I\A. Then, since A is closed along diagonal lines, there exists λ > 0 such

that x − λ1 /∈ A (indeed, if x − λ1 ∈ A for all λ > 0, then, taking λ ↘ 0, we
obtain x ∈ A, in contradiction with our assumption). Define l := (li)i∈I ∈ R

I by
l := λ1− x, i.e.,

li := λ− xi (i ∈ I ). (7.13)
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Let a ∈ A. Then

ϕ(a, l) = min
i∈I (ai + li) < 0; (7.14)

indeed, otherwise mini∈I (ai + li) � 0, whence ai � −li = xi − λ (i ∈ I ), and
hence, since A is a downward set, x − λ1 ∈ A, in contradiction with the choice of
λ. On the other hand,

ϕ(x, l) = min
i∈I

(xi + li ) = min
i∈I

(xi + (λ− xi)) = λ > 0, (7.15)

which, together with (7.14), yields (7.11).
The implication 3◦ ⇒ 4◦ is obvious.
4◦ ⇒ 1◦. Assume that A is a set with the separation property (7.12), and that

there exist a0 ∈ A and x � a0 with x /∈ A. Then, by the separation assumption,
there exists l ∈ R

I such that

min
i∈I (a0

i + li) � sup
a∈A

min
i∈I (ai + li ) < min

i∈I (xi + li ),

and hence there exists an index j ∈ I such that a0
j + lj < xj + lj , in contradiction

with the assumption x � a0. Consequently, A is a downward set.
Finally, assume again that A is a set with the separation property (7.12), and

assume that there exist ak ∈ A (k = 1, 2, ...), ak → x ∈ R
I\A. Then, by the

separation assumption, there exists l ∈ R
I such that

ϕ(ak, l) � sup
a∈A

ϕ(a, l) := M < ϕ(x, l) (k = 1, 2, ...). (7.16)

But, since the set {y ∈ R
I : ϕ(y, l) � M} is closed (by the continuity of ϕ(., l)),

from ak → x and the first part of (7.16) it follows that ϕ(x, l) � M, which
contradicts the second part of (7.16). Consequently, A is a closed set. �
REMARK 7. We recall (see [14, 11]) that if X is a set and W is a set of functions
w : X → R̄, a subset A of X is said to be abstract convex with respect to W, or,
briefly, W -convex, if for each x ∈ X\A there exists w ∈ W such that supw(A) <
w(x). By the above Theorem, a set A ⊆ R

I (= X) is closed and downward if
and only if it is closed along diagonal lines and downward, or, if and only if it is
L̃-convex, where L̃(= W) denotes the set of all functions ϕ(., l), l ∈ R

I .

Let

‖l‖∗ := sup
‖x‖∞�1

ϕ(x, l). (7.17)

The following proposition gives the explicit expression for ‖l‖∗ .
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PROPOSITION 15. We have

‖l‖∗ = 1+min
i∈I li (l ∈ R

I ), (7.18)

‖−l‖∗ = 1−max
i∈I

li . (l ∈ R
I ). (7.19)

Thus, in general, ‖l‖∗ �= ‖−l‖∗ .
Proof. By (7.17), we have

‖l‖∗ = sup
‖x‖∞�1

ϕ(x, l) = sup
‖x‖∞�1

min
i∈I (li + xi) = 1+min

i∈I li,

which proves (7.18). This, in turn, yields (7.19). �

8. Characterization of best approximations by a separation property

In the sequel we shall use the following simple lemma.

LEMMA 1. Let A be a downward set and a0 ∈ bd A. Then

ϕ(a,−a0) = min
i∈I (ai − a0

i ) � 0 (a ∈ A). (8.1)

Proof. Assume, on contrary, that there exists a ∈ A such that a0
i < ai (i ∈ I ).

Then the set V := {x ∈ R
I | x � a} is a neighbourhood of a0, and, since A is

a downward set, in V there exists no element x /∈ A, in contradiction with the
assumption that a0 ∈ bd A. �
THEOREM 9. Let A be a closed downward set, x0 ∈ R

I\A, a′ ∈ A and r ′ :=∥∥x0 − a′
∥∥ . We have a′ ∈ PA(x

0) if and only if there exists l ∈ R
I such that

ϕ(a, l) � 0 � ϕ(y, l) (a ∈ A, y ∈ B(x0, r ′)), (8.2)

Moreover, if (8.2) holds with l = −a′, then a′ = a0 := minPA(x
0).

Proof. Necessity. Assume that a′ ∈ PA(x
0), so r ′ = dA(x

0) := r, and let us
show that there exists l ∈ R

I such that

ϕ(a, l) � 0 � ϕ(y, l) (a ∈ A, y ∈ B(x0, r)). (8.3)

Define l := −a0 = −minPA(x
0), and let y ∈ B(x0, r), that is,

−r � yi − x0
i � r (i ∈ I ). (8.4)

Then, by −l = a0 = x0 − r1 (see Proposition 2) and (8.4), we obtain

ϕ(y, l) = min
i∈I (yi + li ) = min

i∈I (yi − (x0
i − r)) � 0,
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i.e., the right hand side of (8.3). On the other hand, the left hand side of (8.3) for
l = −a0 holds by lemma 1.

Sufficiency. Assume that there exists l ∈ R
I satisfying (8.2). Since x0 − r ′1 ∈

B(x0, r ′), by (8.2) we have mini∈I (x0
i − r ′ + li ) = ϕ(x0 − r ′1,l) � 0, whence

li � −x0
i + r ′ (i ∈ I ). (8.5)

Now let a ∈ A be arbitrary, and define a′′ ∈ R
I by a′′ := min (a, x0), i.e.,

a′′i =
{
ai if ai � x0

i

x0
i if ai > x0

i .
(8.6)

Then, by (8.2) and (8.5), we have

0 � ϕ(a′′, l) = min
i∈I (a′′i + li ) � min

i∈I (a′′i − x0
i + r ′) = r ′ +min

i∈I (a′′i − x0
i ),

whence mini∈I (a′′i − x0
i ) � −r ′, and hence∥∥x0 − a′′

∥∥ = max
i∈I

∣∣x0
i − a′′i

∣∣ � r ′ = ∥∥x0 − a′
∥∥ . (8.7)

Finally, let I 0 := {i ∈ I | ai � x0
i }. Then∥∥x0 − a

∥∥ = max
i∈I

∣∣x0
i − ai

∣∣ � max
i∈I 0

∣∣x0
i − ai

∣∣ = max
i∈I

∣∣x0
i − a′′i

∣∣ = ∥∥x0 − a′′
∥∥ ,

which, together with (8.7), yields
∥∥x0 − a

∥∥ �
∥∥x0 − a′

∥∥ . Thus, a′ ∈ PA(x
0).

In order to prove the last statement, assume that (8.2) holds with l = −a′, i.e.,

ϕ(a,−a′) � 0 � ϕ(y,−a′) (a ∈ A, y ∈ B(x0, r ′)). (8.8)

Then, by the above, a′ ∈ PA(x
0). On the other hand, for any a ∈ PA(x

0) we have∥∥x0 − a
∥∥ = ∥∥x0 − a′

∥∥ = r ′, so a ∈ B(x0, r ′), whence, by (8.8) (for y = a),
mini∈I (ai − a′i ) = ϕ(a,−a′) � 0. Thus, a � a′, whence, by a′ ∈ PA(x

0) and the
definition of a0, we obtain a′ = a0. �

9. The distance to a downward set revisited

THEOREM 10. Let A be a closed downward set and x0 ∈ R
I\A. Then

dA(x
0) = max

D∈H
A⊆D

dD(x
0), (9.1)

where H denotes the set of all lower min-type half-spaces (see Definition 3).
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Proof. Clearly, we have (for any set A)

dA(x
0) � sup

D∈H
A⊆D

dD(x
0). (9.2)

We shall show that there exists D ∈ H such that A ⊆ D and dA(x
0) � dD(x

0),

which will complete the proof.
Let a0 := minPA(x

0) and define D ∈ H by

D := {x ∈ R
I |ϕ(x,−a0) � 0} = {x ∈ R

I : min
i∈I

(xi − a0
i ) � 0}. (9.3)

Let a ∈ A. We claim that a ∈ D. Indeed, assume, on contary, that a /∈ D, i.e.,
ai > a0

i for all i ∈ I. Define

ai := min (ai, x
0
i ) (i ∈ I ). (9.4)

Then ā � a, whence, since A is downward, ā ∈ A. Furthermore, since x0
i − a0

i =
dA(x

0) > 0, whence x0
i > a0

i , for all i ∈ I (by Proposition 2), we have āi > a0
i for

all i ∈ I . Hence,
∥∥x0 − ā

∥∥ = maxi∈I (x0
i − āi ) < maxi∈I (x0

i − a0
i ) =

∥∥x0 − a0
∥∥ ,

in contradiction with a0 ∈ PA(x
0). This proves the claim a ∈ D. Thus, A ⊆ D.

Finally, since D is closed, there exists x ∈ D such that dD(x0) = ∥∥x0 − x
∥∥.

Then, since x ∈ D of (9.3), there exists j ∈ I such that xj � a0
j and hence

dD(x
0) = ∥∥x0 − x

∥∥ � x0
j − xj � x0

j − a0
j = dA(x

0) ,

where the last equality holds by a0 = minPA(x
0) (see Proposition 2). �

REMARK 8. Since ‖.‖ = ‖.‖∞ and I is finite, we have

dA(x
0) = min

a∈A
max
i∈I

|x0
i − a0

i |.

On the other hand, by Proposition 4 and Theorem 1, there holds

max
D∈H
A⊆D

dD(x
0) = max

l∈RI

A⊆Dl

dDl
(x0) = max

l∈RI

mini∈I (ai−li )�0 (a∈A)

min
i∈I

(xi − li )
+.

Consequently, we can write (9.1) as the following duality theorem:

min
a∈A max

i∈I
|x0

i − a0
i | = max

l∈RI

mini∈I (ai−li )�0 (a∈A)

min
i∈I (xi − li)

+. (9.5)

10. Connections between the multiplicative and additive cases

In this section we shall show that the multiplicative and additive cases above are
closely related, in two ways.
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(1) We shall adopt the usual notations

ex = (exi )i∈I (x = (xi)i∈I ∈ R
I ), (10.1)

ln y = (ln yi)i∈I (y = (yi)i∈I ∈ R
I
++). (10.2)

If G is a normal subset of R
I++, then the set A defined by

A := lnG = {ln g : g ∈ G} (10.3)

is a downward subset of R
I and each downward set A can be represented in the

form (10.3), taking G := eA = {ea : a ∈ A}. Note also that G is closed if and only
if lnG is closed.

One has also a correspondence between functions, as follows. Let us denote
by P the set of all functions p : R

I++ → R̄+ and by Q the set of all functions
h : R̄

I → R̄. Let us consider the mapping V : P → Q defined by

V (p)(x) := lnp(ex) (p ∈ P, x ∈ R
I ). (10.4)

It is well-known (see e.g. [4]) that V is one-to-one, namely the inverse mapping
V −1 is

V −1(h)(y) = eh(lny) (h ∈ Q, y ∈ R
I
++). (10.5)

We recall that if G is a subset of R
I++, the usual Minkowski gauge of G is the

function µG : R
I++ → R+ defined by

µG(y) := inf{λ > 0 : y ∈ λG} (y ∈ RI
++). (10.6)

PROPOSITION 16. Let G ⊆ R
I++ be a normal set and let A := lnG. Then

V (µG) = ρA, (10.7)

where ρA is the plus-Minkowski gauge (3.9) of A.
Proof. Let x ∈ R

I . Then, by (10.6),

µG(e
x) = inf{λ > 0 : ex ∈ λG} = inf{λ > 0 : x ∈ (ln λ)1+ lnG}
= inf{λ > 0 : x ∈ (ln λ)1+ A}, (10.8)

and hence, by (10.4), (10.8), and (3.9),

V (µG)(x) = lnµG(e
x) = inf{lnλ : λ > 0, x ∈ ln λ+ A}

= inf{ν : x ∈ ν1+ A} = ρA(x).

�
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PROPOSITION 17. Let ϕ̃0 be the restriction of the multiplicative coupling func-
tion (6.1) to R

I++ × R
I++, that is,

ϕ̃0(x, l) = ϕ0(x, l) = min
i∈I

lixi (x, l ∈ R
I
++), (10.9)

and let ϕ be the additive coupling function (7.10). Then ϕ̃0(., l) ∈ P and

V (ϕ̃0(., l))(x) = ϕ(x, ln l) (x ∈ IRI , l ∈ R
I
++). (10.10)

Proof. Let x ∈ R
I , l ∈ R

I++. Then, by (10.4) (with p = ϕ̃0(., l) of (10.9)), (6.1),
and (7.10), we obtain

V (ϕ̃0(., l))(x) = ln ϕ0(e
x, l) = ln min

i∈I lie
xi = min

i∈I ln lie
xi

=min
i∈I

(xi + ln li ) = ϕ(x, ln l).

�
Thus, the mappings (10.3) and (10.4) permit to carry results on subsets of R

I++
and extended-non-negative valued functions on R

I++ to corresponding results on
subsets of R

I and extended-real valued functions on R
I respectively, and vice

versa.
(2) Many results from the additive and the multiplicative cases can be extended

to the following framework:

DEFINITION 6. Let I be a non-empty finite index set. Let A = (A,�,�) be
a complete ordered group, where � denotes the group operation (we recall that
a partially oredered group A = (A,�,�) is said to be complete, if (A,�) is a
conditionally complete lattice, i.e., if every non-empty order-bounded subset of A
admits a supremum and an infimum in A). Define a coupling function ϕ : AI ×
AI → A by

ϕ(x, l) := inf
i∈I (xi�li ) (x, l ∈ AI ). (10.11)

Then, for A = (R++,×,�), ϕ becomes the coupling function ϕ̃0 : R
I++ ×

R
I++ → R++ defined by (10.9), and for A = (R,+,�), ϕ becomes the coupling

function R
I × R

I → R defined by (7.10).
The generalization of some results of this paper to the framework of functions

with values in extensions of complete ordered groups [8, 9] will be given elsewhere
(in preparation).
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